Leveraging LLMs for Automated Dream Coding Introducing DreamCoder

IASD 2025 - Research Panel June 23, 2025

Ben Bongalon (ben.bongalon@gmail.com) Independent Researcher

My Journey into Dream Research

I've been logging my dreams regularly since 2023

- 341 total (June 20), Average ~5/wk
- I also keep a daily journal

My dreams often align with the Continuity Hypothesis

What drew me to quantitative dream analysis

- Lets the data speak. Patterns naturally emerge from dream content
- Reveals large-scale trends. Analysis across individuals, cultures, time
- Aligns with engineering mindset. Focus on testable hypotheses and data-backed conclusions

Serendipity with Al skills. Large Language Models (LLMs) for dream content analysis

Hall-Van de Castle (HVdC) Coding System

Overview

- Developed in the 1960s by Calvin Hall and Robert Van de Castle
- Most widely adopted system for quantifying dream content
- Clearly defined coding rules → maximizes inter-coder reliability

10 Content Categories → dream elements to be quantified

- Characters person (+ attributes), animal, creature
- Social Interactions aggression, friendliness, sexuality
- Emotions anger, apprehension, sadness, confusion, happiness
- others Success & Failure, Settings, ...

The Content Analysis of Dreams CALVIN S. HALL ROBERT L. VAN DE CASTLE

The Content Analysis of Dreams
Hall & Van de Castle (1963)

the HVdC coding "bible"

Content Indicators

- Quantitative measures of key aspects of dream content Examples: Male %, Aggression %
- Profile of dreamer's relationships, emotions & concerns

Steps in HVdC Dream Analysis

- 1. Identify dream elements and assign HVdC codes
- 2. Count category frequencies & compute Indicators
- 3. Compare metrics to norms or other baselines

Barriers to Adoption

Hard to become proficient

Dozens of rules, many requiring nuanced interpretation

Manual coding is labor-intensive → makes large-scale analysis difficult

What if?

Coding dreams is as simple as... pressing a button

What are Large Language Models (LLMs)

Commonly used: ChatGPT, Gemini, Grammarly

A type of AI that generates human-like text:

- Summarizing − "Summarize this dream"
- ## Translating "Translate to Spanish"
- Completing "Finish the story: I went to a party and met ..."
- Planning "Create a 5-day itinerary"

LLMs excel in following instructions → ideal for structured analysis of dream content

Prior studies used Language Models, with limitations

- Bertolini et al. (2023) Only codes for presence/absence of Emotions
- Cortal (2024) First LLM-based dream coding; codes HVdC with simplifications (e.g., Family → 'Known')

LLMs have limitations:

- 1. Hallucination generate false information
- 2. Attention limits may "forget" some details of a long or complex input

DreamCoder - software for Automated Dream Coding

Key Features

- Generates full HVdC codes from dream content
 - Currently codes for: Characters, Social Interactions, Emotions
- Uses GPT-4.1 (OpenAl's advanced LLM) for accurate coding

The Promise

- Effortless dream coding. Al handles the heavy lifting; just review and refine
- More time for insights. Researchers focus on analysis, not manual coding
- Affordable at scale. \$0.01 to \$0.02 per dream → 1M dreams for \$20K

How DreamCoder Works

- 1 Identify known characters from the narrative
- 2 Insert dream text & cast into the User Prompt.
- 3 Instruct LLM to find elements & infer attributes

Assign HVdC codes based on attributes.

```
Abigail invited her niece to the zoo.
```

Cast Finder

Cast of Characters

Abigail, F, Aunt, father's sister Abner, M, Cousin, Aunt Esther's son Agnes, F, Grandmother, paternal

Zach,M,Friend,

```
User Prompt
 Abigail invited her
 niece to the zoo.
 Abigail, female, aunt
                                         LLM
                                       (GPT-4.1)
System Prompt

    One LLM call

    Character rules
                                      per Category
      Social rules
     Emotion rules
```

```
characters": {
                        Annotations
"elements": [
    "index": 1,
    "text_fragment": "Abigail",
    "start": 1,
    "end": 8,
    "number": "individual",
    "entity_attributes": [
               "person", "alive"],
    "gender": "female",
    "relationship": "aunt",
    "identity": "relative",
    "age": "adult"
    "index": 2,
    "text_fragment": "her neice",
    "start": 17,
    "end": 26,
    "number": "individual",
    "entity_attributes": [
                "person", "alive"],
    "gender": "female",
    "relationship": "niece of aunt",
    "identity": "relative",
    "age": "juvenile"
```

"individual", "female", "relative", "adult"1FRA

- LLM doesn't assign codes to reduce errors (hallucinations)
- Python logic handles code assignment

Partial Match Scoring

Motivation: Exact scoring is binary: match vs. not match

does not distinguish minor from major differences.

```
minor: 1MBA (Indiv, Male, Brother, Adult) # 1MBT (Indiv, Male, Brother, Teen)
```

major: 1MBA (Indiv, Male, Brother, Adult) \neq 1FSA (Indiv, Female, Stranger, Adult)

both have Exact Score = 0

Partial scoring measures subtle coding differences

Assigns greater weights to more important attributes

Number 10%	Gender 40%	Identity 40%	Age 10%
1	M	В	A
1	M	В	Т
0.1	0.4	0.4	0.0

Number 10%	Gender 40%	Identity 40%	Age 10%
1	M	В	A
1	F	S	A
0.1	0.0	0.0	0.1

Partial Score = 0.9

Partial Score = 0.2

"My brother is sad."

1FSA SD, 1FSA

0.2 1.0

Mean = 0.6

Dream Score = mean Partial Score of elements

Coding Performance

- Example dream texts from Hall & Van de Castle's (1963) book were input into DreamCoder
- Strong agreement. Mean Partial Score = 0.84 across five Categories

	Characters	Aggression	Friendliness	Sexuality	Emotions
Partial Score	0.86	0.83	0.87	0.74	0.90
Exact Score	0.64	0.60	0.53	0.72	0.75
Number of dreams	28	20	31	9	8

Agreement with Published Results

Reference: 250 dreams from Barb Sanders¹ dataset, manually coded and profiled by Dr. William Domhoff's research team ²

Results: Overall results aligned well (75% within ±5%), with refinements identified

Dream Set 1 (N=125)

	Metric	Manual	DreamCoder	Difference
Characters	Male %	58.4%	58.3%	-0.1%
	Familiar %	38.4%	43.2%	4.8%
	Friends %	20.0%	25.1%	5.1%
	Family %	14.9%	15.1%	0.1%
	Animal %	7.2%	6.9%	-0.3%
Social Percents	Aggression/ Friendliness	48.7%	45.1%	-3.6%
	Befriender %	48.6%	48.5%	-0.1%
	Aggressor %	53.1%	54.8%	1.8%
	Physical Aggression %	29.4%	23.8%	-5.6%
Dreams with at least one	Aggression	52.0%	60.0%	8.0%
	Friendliness	52.8%	67.2%	14.4%
	Sexuality	21.6%	18.4%	-3.2%

Dream Set 2 (N=125)

	Metric	Manual	DreamCoder	Difference
Characters	Male %	48.6%	49.3%	0.7%
	Familiar %	33.5%	36.8%	3.3%
	Friends %	10.6%	15.1%	4.5%
	Family %	19.0%	18.9%	-0.1%
	Animal %	6.0%	7.1%	1.1%
Social Percents	Aggression/ Friendliness	49.1%	42.3%	-6.8%
	Befriender %	56.4%	58.6%	2.3%
	Aggressor %	48.1%	52.6%	4.5%
	Physical Aggression %	33.1%	24.9%	-8.3%
Dreams with at least one	Aggression	56.0%	57.9%	1.9%
	Friendliness	53.6%	59.5%	5.9%
	Sexuality	18.4%	15.9%	-2.5%

The 250 dreams were coded in ~40 minutes for under \$4 USD (for OpenAl LLM calls)

¹ Barb Sanders is an pseudoname for a woman who contributed over 3,000 dreams from her dream journal to DreamBank.

² Table 5.3 in Domhoff (2003), The Scientific Study of Dreams.

Example: Coding dreams in different languages

```
her niece to the zoo, making her giddy with anticipation.
                     invited
English
                   1FRA 5> 1FRC
             1FRA
                                1FRC
                                                                  HA, 1FRC
Spanish
            Abigail
                              a su sobrina al zoológico, lo que la hizo saltar de la emoción.
                   1FRA 5> 1FRC
             1FRA
                                 1FRC
                                                                        HA, 1FRC
                           ihre Nichte in den Zoo ein und der Zoobesuch ließ sie ganz aufgeregt werden.1
German
            Abigail
                     lud
                  1FRA 5> 1FRC
             1FRA
                               1FRC
                                                                            AP, 1FRC
           アビゲイルが姪を動物園に誘うと、彼女は大喜びで楽しみにしました。
Japanese
             1FK*A
                        1FRC
                               1FKA 5> 1FRC
                                                       HA, 1FRC
                                                                   HA, 1FRC
```

- Promising results across 4 different languages, based on limited data
- Can further improve with fine-tuning

^{*} Not coded as (R)elative—name was in Japanese, Cast list is English-only

Key Contributions to Dream Research

Innovation	Benefits
1. General-purpose LLM for coding	 Prompts makes it easy to define coding behavior, even for non-experts Advanced LLMs enable dreams to be coded precisely to HVdC rules Supports multiple languages
2. Social Character modelinguse dreamer's social context (Cast of Characters)	 More precise coding for Characters in the dream e.g. "cousin" = Relative vs. Known Relationship context improves Social Interaction analysis "My friend grabbed my hand" vs. "A stranger grabbed by hand"
3. Partial Match scoring	 Enables fine-grained, objective scoring Simplifies finding accuracy issues

^{1,2} Also known as zero-shot and few-shot learning, respectively.

What's Next

Software enhancements

- Improve accuracy of Aggression and Friendliness
- Send de-identified data when calling GPT (code dreams anonymously)

I'm eager to explore the unique insights HVdC coding can reveal

- Begin with analyzing my own dream data
- Collaborate with fellow dream researchers and practitioners

Final Thoughts

Automated dream coding is no longer a dream—it's becoming a reality

Less time coding, more time on meaningful insights

We're entering a new era of "big data" for dream research

- Easily code 1000s of dreams
- Enables large-scale comparisons across demographics, cultures, and time

Opportunity to blend quantitive dream content analysis with interpretive methods

Tools like DreamCoder can transform how we study the dreaming mind.

References

Bertolini, L., Fajcik, M., Sabo, O., & Smrž, P. (2023). Automatic scoring of dream reports' emotional content with large language models. arXiv. https://arxiv.org/abs/2302.14828

Cortal, G. (2024). Sequence-to-sequence language models for character and emotion detection in dream narratives. In Proceedings of the 2024 Joint International Conference on Computational Linguistics and Language Resources (LREC-COLING) (pp. 1449–1458). https://aclanthology.org/2024.lrec-main.1282

Domhoff, G. W. (2003). The scientific study of dreams: Neural networks, cognitive development, and content analysis. American Psychological Association.

Hall, C., & Van de Castle, R. (1966). The content analysis of dreams. Appleton-Century-Crofts.

Riedl, M. (2023). A very gentle introduction to large language models without the hype. Medium. https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Acknowledgements

- Bill Domhoff
- Adam Schneider

Contact

ben.bongalon@gmail.com

Thank you!